

Enterprise Loop 2025 @ c-base, Rungestr. 20, 10179, Berlin, Germany
<https://eloop.org>

Lindy Hieroglyphs: Ancient Scripts as a Durable Alternative to Modern Emojis

kmein¹

¹independent researcher

Saturday 1st November, 2025

Executive summary

Digital expression increasingly relies on ephemeral, proprietary symbol sets such as emojis. Despite their popularity, these icons are controlled by centralized entities and subject to rapid cultural decay. This paper argues that **Unicode hieroglyphs**—representations of ancient scripts such as Egyptian and Anatolian—offer a more durable and decentralized medium for symbolic communication. Drawing on the Lindy effect, which states that the expected future life of non-perishable entities is proportional to their current age, we show that ancient writing systems possess far greater temporal resilience than corporate iconography.

We examine the technical foundations that make hieroglyphs practical for everyday digital use: modern Unicode coverage, the Noto font family, and tools for character entry such as `unicodmenu` and `UnicodePad`. We also analyze expressive affordances unavailable to modern emoji due to moderation constraints. Finally, we highlight aesthetic and cultural advantages inherent in using ancient scripts, advocating for their adoption as a “Lindy-compliant” symbolic layer for human communication.

1 Introduction

Emojis are ubiquitous in modern communication, providing users with a simplified form of expressive shorthand. However, their ecosystem is fragile. Each platform—Apple, Google, Twitter—implements its own renderings. Meanings drift rapidly, and the symbols themselves are constrained by centralized approval processes and moderation decisions.

In contrast, ancient hieroglyphic systems—some in continuous use for thousands of years—represent a form of symbolic stability. They have survived the fall of empires and technological transitions from stone to papyrus to Unicode. The argument presented here is straightforward: **if a symbol system has persisted for millennia, it is more likely to continue doing so.**

This is the essence of the **Lindy effect** [6]. When applied to communication systems, it suggests that ancient scripts are inherently more robust and more likely to remain intelligible in the far future than contemporary icons designed by corporations for quarterly updates.

The thesis of this paper is that Unicode-encoded hieroglyphs are a superior, Lindy-compliant alternative to emojis for those concerned with longevity, decentralization, and expressive completeness.

2 The Lindy Effect and Symbolic Durability

The Lindy effect is an informal statistical heuristic stating that for non-perishable entities—ideas, books, technologies—their future life expectancy is proportional to their current age [5]. Something that has survived 1,000 years is expected to last roughly another 1,000.

Applied to symbolic systems, this means that scripts and sign conventions that have persisted across centuries are likely to persist further. Latin script, for example, has remained in continuous use for over two millennia. Hieroglyphic systems, though no longer used for daily writing, have retained symbolic and scholarly continuity for even longer.

By contrast, emojis have existed for barely two decades. Their design pipeline is ephemeral: yearly updates replace, remove, or reinterpret icons based on current sensibilities. The “pistol” emoji was famously redesigned as a water gun following corporate policy shifts in 2016 [1]. Such volatility implies low Lindy expectancy: a symbol that cannot survive one product cycle is unlikely to persist for centuries.

Hieroglyphs, on the other hand, are **already ancient**. Their future life expectancy, per Lindy logic, extends far beyond that of modern proprietary icons. They are non-perishable and non-proprietary—a combination that places them on the long end of the durability spectrum.

3 Unicode Hieroglyphs as a Stable Symbolic Layer

3.1 Standardization and Encoding

The Unicode Standard [7] provides a uniform encoding layer for written symbols across platforms. This includes not only living scripts but also historical and extinct ones. The Egyptian Hieroglyph block (U+13000–U+1342F) and Anatolian Hieroglyph block (U+14400–U+1467F) are part of the Basic Multilingual Plane extensions, ensuring their support in major text rendering systems.

Unlike emojis—whose inclusion depends on proposals to the Unicode Emoji Subcommittee—hieroglyphs are encoded as stable script data. Their glyphs are not subject to stylistic re-interpretation by vendors. The hieroglyph for “croissant” (🥐) will remain 🥐, regardless of what any platform decides to render.

3.2 Display Infrastructure

Until recently, practical use of hieroglyphs was limited by font support. The introduction of **Noto fonts**—a comprehensive, open-source typeface family by Google [3]—resolved this. Noto aims to “support all the world’s languages,” and now includes the Egyptian Hieroglyphs and Anatolian Hieroglyphs blocks. As a result, hieroglyphic symbols display consistently across systems, browsers, and operating systems.

This stability is crucial. A Lindy-compliant symbol must not depend on corporate styling decisions. Noto’s open licensing ensures that once a glyph is published, it remains indefinitely accessible and reproducible.

4 Decentralization and Cultural Independence

4.1 The Governance Problem of Emojis

Emoji development is coordinated by the Unicode Consortium, but proposals and approvals are often influenced by corporate members. Apple, Google, and Microsoft each have voting representation. As a result, the process reflects platform priorities more than cultural or linguistic universality.

Controversial or “unsafe” symbols—such as explicit sexual representations or realistic weapons—are excluded or altered to align with platform policies. The “gun” emoji became a toy water pistol; the “eggplant” and “peach” stand in for censored anatomical references.

This corporate gatekeeping effectively creates a **sanitized semiotic ecosystem**, limiting human expression to what is acceptable for advertising-driven platforms.

4.2 Hieroglyphs as a Free Symbolic System

Ancient scripts, by contrast, are **not controlled by any modern entity**. The Egyptian hieroglyph for a phallus (Gardiner's sign D52) [2, p. 456] is part of the historical record; Unicode encodes it neutrally as a sign, not as a moral statement.

This decoupling from corporate moderation is not merely symbolic—it restores autonomy to users. Hieroglyphic characters are available to everyone, immutable, and globally interoperable. They are the open-source alternative to proprietary emoji culture.

5 Display and Input Infrastructure

5.1 Font Availability

As of 2024, the **Noto Sans Egyptian Hieroglyphs** and **Noto Sans Anatolian Hieroglyphs** typefaces provide full coverage of their respective Unicode blocks. Other open fonts (e.g., GNU FreeFont) also support subsets, ensuring redundancy and long-term accessibility.

5.2 Input Methods

Historically, entering hieroglyphs required copy-paste from online tables. This has improved dramatically. Two notable tools enable practical input workflows:

- **unicodmenu** — A Nix-based Unicode selector for desktop systems [4]
- **UnicodePad** — A mobile application for Android providing full Unicode access and custom keyboards.

These tools make it feasible to incorporate hieroglyphs into chat systems, text documents, and social media posts. Input friction—a major obstacle to adoption—is now minimal.

5.3 Cross-Platform Behavior

Because hieroglyphs are encoded as standard characters rather than emoji-style pictographs, they render as text in all environments supporting Unicode ≥ 13.0 . This includes browsers, terminals, and PDF outputs. The universality of Unicode ensures that hieroglyphs are inherently **future-proof**—no proprietary rendering stack is required.

6 Expressive Range of Ancient Scripts

6.1 Anatolian Hieroglyphs

The Anatolian block contains some surprisingly modern-looking symbols. Examples include:

- 🚶 (a roller-skate-like “ladder on wheels” sign),
- 🍪 (a biscuit or cookie-like sign),
- 🍞 (a crescent bread or croissant-like sign).

These characters demonstrate the aesthetic variety and visual richness of Bronze Age sign systems. They convey both concreteness and ambiguity—qualities often lost in modern emoji design.

6.2 Egyptian Hieroglyphs

The Egyptian corpus is even larger, with over 1,000 standardized symbols classified by Gardiner [2]. They cover human figures, animals, tools, weapons, and abstract determinatives. Examples include:

- 🌻 (a phallus, sometimes shown with liquid),
- 🚶 (a falling man with blood issuing from the head),
- 🚶 (arms engaged in rowing).

These characters demonstrate the aesthetic variety and expressive richness of the Egyptian hieroglyphic system. They convey actions, anatomy, and gestures in ways that modern emoji often cannot, highlighting the corpus’s breadth and cultural specificity.

6.3 Semantic Flexibility

Unlike emojis, hieroglyphs are not bound to fixed semantic tags. Their meanings can evolve organically through usage. A hieroglyph can stand for its original object, a metaphor, or an emergent meme meaning. This open semantics aligns with the Internet’s folk creativity, while avoiding institutional gatekeeping.

7 Applications and Integration

7.1 Communication Platforms

Hieroglyphs can be used in any Unicode-compatible environment. This includes messaging systems (Matrix, Signal, IRC), markup documents, and even programming identifiers in modern languages that support Unicode identifiers (e.g., Python 3, Julia).

Potential integration points include:

- Symbolic annotations in documentation or logs.
- Status indicators in command-line tools.
- Artistic or branding applications emphasizing historical continuity.

7.2 Academic and Cultural Projects

Linguists, historians, and digital humanists can use Unicode hieroglyphs directly in publications, avoiding image inserts or transliteration hacks. The scholarly infrastructure already supports this through LaTeX packages and Unicode-aware fonts.

In educational contexts, this creates an opportunity to reconnect digital-native users with the history of writing systems. Hieroglyphs become both expressive tools and gateways to historical literacy.

7.3 Design and Aesthetic Integration

From a design-engineering perspective, hieroglyphs offer a vector-based, resolution-independent symbolic layer. They can be embedded in web typography, user interfaces, and generative design systems.

Because the glyphs are open and stable, they integrate cleanly with systems requiring deterministic rendering—e.g., hashing, symbolic computation, or procedural generation.

8 Discussion

The choice between emojis and hieroglyphs mirrors broader tensions in digital culture: centralization versus decentralization, novelty versus longevity, aesthetic control versus creative freedom.

Emojis are short-lived cultural products tied to corporate branding cycles. Hieroglyphs are time-tested symbolic architectures that outlasted their civilizations. The former rely on yearly updates to maintain relevance; the latter require only human curiosity.

From a software-engineering viewpoint, hieroglyphs are a **stable API for symbolic expression**. Their specification is fixed, their implementations are open, and their behavior is predictable. Emojis, conversely, behave like an unstable interface: backward-incompatible, platform-dependent, and culturally volatile.

This reframing—from decorative icons to protocol-level symbols—positions hieroglyphs as a rational choice for long-term digital communication.

9 Conclusion

The Lindy principle teaches that longevity predicts longevity. Ancient scripts, encoded in Unicode and supported by open fonts, are thus superior symbolic substrates to proprietary emoji sets.

Hieroglyphs are:

- **More durable:** Proven across millennia.
- **More expressive:** Covering unfiltered aspects of human life.
- **More open:** Free from centralized control.
- **More compatible:** Universally renderable via Unicode and Noto.

Adopting hieroglyphs as a daily symbolic vocabulary aligns digital communication with the long arc of human culture. In doing so, we make our digital expression more Lindy—anchored in the deep time of civilization, rather than the quarterly product cycle.

References

- [1] Emojipedia. **Apple’s New Gun Emoji Is a Water Pistol.** 2016. URL: <https://blog.emojipedia.org/apple-changes-gun-emoji/>.
- [2] Alan H. Gardiner. **Egyptian Grammar: Being an Introduction to the Study of Hieroglyphs.** 3rd. Oxford University Press, 1957.
- [3] Google. **Noto Fonts.** URL: <https://fonts.google.com/noto> (visited on 11/01/2025).
- [4] kmein. **unicodmenu.nix.** URL: <https://github.com/kmein/niveum/blob/master/packages/unicodmenu.nix> (visited on 11/01/2025).
- [5] Benoit B. Mandelbrot and Richard L. Hudson. **The (Mis)Behavior of Markets.** Basic Books, 2004.
- [6] Nassim Nicholas Taleb. **Antifragile: Things That Gain from Disorder.** Random House, 2012.
- [7] The Unicode Consortium. **The Unicode Standard, Version 15.1.** 2024. URL: <https://unicode.org/versions/Unicode15.1.0/>.